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Abstract

Interaction among loaded wheels via railway track is studied. The vertical parametric oscillations of an infinite row of

identical equally spaced wheels, bearing constant load and uniformly moving over a railway track, are calculated by means

of Fourier series technique. If the distance between two consecutive wheels is big enough, then one can disregard their

interaction via the railway track and consider every wheel as a single one. In this case, however, the Fourier series

technique represents an appropriate computation time-saving approximation to a Fourier integral transformation

technique that describes the oscillations of a single moving wheel. Two schemes are considered. In the first scheme, every

wheel bears the same load. In the second one, consecutive wheels bear contrarily directed loads of the same magnitude. The

second scheme leads to simpler calculations and so is recommended to model the wheel–track interaction.

The railway track periodicity due to sleeper spacing is taken into account. Each period is the track segment between two

adjacent sleepers. A partial differential equation with constant coefficients governs the vertical oscillations of each

segment. Boundary conditions bind the oscillations of two neighbour segments and provide periodicity to the track.

The shear deformation in the rail cross-section strongly influences the parametric oscillations. It also causes

discontinuity of the rail centre-line slope at any point, where a concentrated transverse force is applied. Therefore,

Timoshenko beam properties with respect to the topic of this paper are discussed.

Interaction between a railway track and a bogie moving at moderate speed is studied. The study points to influence of

the bogie frame oscillations on variation in the wheel–rail contact force over the sleeper span. The simplified bogie model

considered includes only the primary suspension. A static load applied to the bogie frame centre presents the vehicle body.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many rail systems (subways, tramways and so on) operate with rather moderate speed. However, some
dynamical problems arise from their operation. Small variation in railway track vertical stiffness due to sleeper
spacing causes parametric oscillations of the moving wheels and variation in the rail–wheel contact force over
the sleeper span that can influence the wheel and rail wear. Both the oscillations and the variation are getting
most significant as soon as the sleeper passing frequency coincides with a frequency of free vertical oscillations
of a stationary wheel set on the rail. In early studies of the wheel–rail interaction, the rail inertia and shear
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

b0 bogie base
b1 distance depending on the bogie frame

rotation inertia
c0, r0 stiffness and damping of the bogie

primary suspension per wheel
f0(t), F0(T) dimension/dimensionless contact

force
h, H dimension/dimensionless distance be-

tween wheels
kc contact spring stiffness
l sleeper spacing
m0 unspung mass per wheel
m1 mass of the bogie frame per wheel
t, T dimension/dimensionless time
x, X beam(rail) longitudinal dimension/di-

mensionless co-ordinate

y0(t), Y0(T) wheel dimension/dimensionless ver-
tical deflection

y(x,t), Y(X,T) rail dimension/dimensionless up-
ward deflection

y(x), Y(X) beam dimension/dimensionless trans-
verse deflection

A cross-section area
EJ beam(rail) bending stiffness
R ¼ k0GA beam shear stiffness
U stiffness of uniform elastic foundation

Greek letters

j angle of the beam cross-section rotation
s, S dimension/dimensionless distribution

parameter
d(x) Dirac delta-function
v0 train speed
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deformation in the cross-section were disregarded [1,2]. The track static stiffness was calculated and
approximated as a sum of a constant and a cosine function. In such a way, the differential equation of the
wheel vertical oscillations reduces to the Mathieu equation [3], supplemented with a constant in the right-hand
side. There are some differences between such parametric oscillations and forced oscillations due to the rail
track roughness. For example, in presence of viscous damping, forced oscillations are always bounded, but, in
the same case, solutions to Mathieu equation can be unlimited if the damping is small [4].

Calculations of the single wheel parametric oscillations due to sleeper spacing show significant variation in
the normal contact force over the sleeper span at the wheel speed near 120 km/h and the corresponding sleeper
passing frequency near 40Hz [5]. The frequency of such parametric oscillations is low. Therefore, the sleeper
and ballast can be presented with a single concentrated mass supported by a spring and a dashpot in parallel.
In order to make comparison, the calculations have been made with and without taking into account shear
deformation in the rail cross-section. In the second case, the variation in the contact force over the sleeper span
turned out to be much less. Thus, the shear deformation strongly influences the parametric oscillations and so
the calculations, made in Refs. [1,2] without considering this, remarkably underestimate the wheel parametric
oscillations. The Timoshenko beam properties are considered in Section 2.

Interaction among multiple-in-line wheels via the railway track is studied in Sections 3–9. The vertical
oscillations of an infinite row of wheels, uniformly moving over the track at the same distance, are calculated
by means of a Fourier series technique. If the distance between the wheels is small enough, then their
interaction via the track is significant. Otherwise, one can disregard it. In this case, however, the Fourier series
technique represents an appropriate approximation conformed to the Fourier integral transformation
technique that has been adopted in Ref. [5] to describe the vertical oscillations of a single wheel. As shown in
Section 3, such an analytical approach is similar to Ripke’s numerical approach to rail–wheel interaction [6].
Any numerical simulation of wheel–rail interaction supposes the railway track length to be finite. Therefore,
one has to impose some boundary conditions on the track. Two different boundary conditions were imposed
in Ref. [6]. Both of them are also considered in this study.

The tandem wheels interact both via the bogie frame or the vehicle body and via the track. The interaction
via the track of four wheels, related to bogies of adjacent vehicles, was investigated in Refs. [7,8]. The distance
between the front wheel and the rear wheel of the same bogie is small and the interaction between these wheels
both via the rail and via the bogie frame is important. The primary suspension between the wheels and the
bogie frame is usually relatively stiffer and the secondary between the frame and the vehicle body is softer.
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This makes possible removal of the secondary suspension and replacement of the vehicle body with the static
load to simplify the further study. The full investigation can be made in the same way.

2. Timoshenko beam properties

Two consequences follow from Timoshenko beam theory. The first is an additional inertia force due to the
shear deformation. The well-known Timoshenko equations of the beam free oscillations take into account this
additional inertia force and give a small correction to Euler–Bernoulli theory [9]. These two equations describe
the oscillations in terms of the beam transverse deflection and cross-section rotation. The second less known
but more important consequence is a discontinuity of the beam centre-line slope at any point where a
concentrated transverse force is applied. This force is an idealization usually used to replace a load distributed
over a small area. The discontinuity replaces the beam small segment of big curvature. To show this, a single
equation that governs the beam transverse deflection will be first derived.

Fig. 1 shows a small beam segment bounded by two cross-sections x and x+dx and loaded with the
distributed moment m(x) dx and transverse force q(x) dx. The positive directions of the bending moment M

and two angles of rotation j and dy(x)/dx, related to the beam cross-section and the centre-line y(x), are also
shown. Under the action of the force Q, the rectangular beam segment turns into the parallelogram (see
Fig. 1), while the angle between the segment adjacent sides changes its value by g ¼ Q=R. The value R ¼ k0GA

is the beam shear stiffness, G is the shear modulus, A is the beam cross-section area. The dimensionless
coefficient k0 accounts for an uneven distribution of the force Q over the beam cross-section. Values M, j, g
and dy(x)/dx are bound with the following equalities:

dyðxÞ=dx ¼ j� g ¼ j�Q=R; M ¼ EJ dj=dx. (2.1)

The value EJ is the beam bending stiffness, E is the modulus of elasticity, J is the moment of inertia of the
beam cross-section. Consecutive differentiating and taking into account equalities qðxÞdx� dQ ¼ 0 and
mðxÞdxþ dM �Qdx ¼ 0 of equilibrium of the beam segment give

d2yðxÞ

dx2
¼

M

EJ
�

qðxÞ

R
;

d3yðxÞ

dx3
¼

1

EJ
R j�

dyðxÞ

dx

� �
�mðxÞ

� �
�

dqðxÞ

Rdx
(2.2)

and yield the following single equation that governs the Timoshenko beam transverse deflection:

d4yðxÞ

dx4
�

1

EJ
qðxÞ �

dmðxÞ

dx

� �
þ

d2qðxÞ

Rdx2
¼ 0. (2.3)
Fig. 1. Bending and shear deformations in a beam.
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Further, consider an infinite beam resting on uniform elastic foundation of stiffness u. The distributed
foundation reaction is �uy(x). The beam considered bears a downward distributed load qðxÞ ¼ �a0f ðxÞ,
where a0 is a positive factor (in N) and the function

f ðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp �

x2

2s2

� �

yields to the Gaussian normal distribution (see Fig. 2) where s is the distribution parameter (in m). The value
a0 is the total load applied to the infinite beam, 68% of this total load is applied to the beam segment
�spxps. This segment can be compared to the contact patch size; 99.7% of the total load is applied to the
greater segment �3spxp3s.

The greatest density of the load corresponds to x ¼ 0; its value qð0Þ ¼ �a0

�
s
ffiffiffiffiffiffi
2p
p� �

(in N/m) tends to
infinity as s-0 along with those two segments. In this case, the distributed load turns into a concentrated one.
The Gaussian normal distribution function f(x) also turns into a Dirac delta-function d(x). Substitute
q(x)�uy(x) for q(x) in Eq. (2.3). To make calculations easy, the following dimensionless variables and
parameters are used only in this section:

X ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ðEJÞ4

p
; Y ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ðEJÞ4

p
; S ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ðEJÞ4

p
; A0 ¼ a0

. ffiffiffiffiffiffiffiffiffi
EJu
p

; B ¼
ffiffiffiffiffiffiffiffiffi
EJu
p .

R.

Now, the differential equation (2.3) takes the following dimensionless form:

d4Y ðX Þ

dX 4
� B

d2Y ðX Þ

dX 2
þ Y ðX Þ ¼ �A0 1� B

d2

dX 2

� �
F ðX Þ; F ðX Þ ¼

1

S
ffiffiffiffiffiffi
2p
p exp �

X 2

2S2

� �
. (2.4)

All solutions to this equation as well as their derivatives of any even order represent even functions. The rest
derivatives are odd. Solve Eq. (2.4) by means of Fourier integral transformation technique. To this end, write
the direct and inverse transforms in the following form:

Y �ðOÞ ¼
Z þ1
�1

Y ðX Þ expð�iOX ÞdX ; Y ðX Þ ¼
1

2p

Z þ1
�1

Y �ðOÞ expðiOX ÞdO.

The transform of the Gaussian normal distribution function F(X) equals exp ð�O2S2=2Þ [4]. Calculate Y �ðOÞ
and substitute it in the inverse transform. Consecutive differentiating yields

djY ðX Þ

dX j
¼
�A0

2p

Z þ1
�1

ðiOÞjð1þ BO2Þ exp ðiOX � O2S2=2ÞdO

O4 þ BO2 þ 1
; j ¼ 0; 1; 2; . . . . (2.5)
Fig. 2. Beam on uniform elastic foundation.
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In the case of distributed load (S40), all the infinite integrals (2.5) exist and represent continuous functions.
In the case of concentrated load (S ¼ 0), the integrals do not exist if jX2. To avoid this difficulty, one can
directly calculate the first integral (2.5) by means of residue technique and the rest by differentiation; Y(X) and
its first derivative, both written for X40, are

Y ðX Þ ¼ �
A0

2
expð�aX Þ

1þ Bffiffiffiffiffiffiffiffiffiffiffiffi
2þ B
p cosðbX Þ þ

1� Bffiffiffiffiffiffiffiffiffiffiffiffi
2� B
p sinðbX Þ

� �
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2þ B
p

2
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2� B
p

2
,

dY ðX Þ

dX
¼

A0

2
expð�aX Þ B cosðbX Þ þ

2� B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� B2
p sinðbX Þ

� �
.

The same can be immediately obtained by means of the Fourier transformation technique starting with the
concentrated load instead of the distributed one and the Dirac delta-function d(X) instead of the Gaussian
normal distribution function F(X). Fig. 3 shows the beam dimensionless transverse deflections Y(X) and their
slopes dY(X)/dX, related to decreasing values 0.4, 0.2 and 0 of the dimensionless distribution parameter S. The
curvature of the beam centre-line at X ¼ 0 increases along with the load density as S-0. In the limit case
S ¼ 0, the beam centre-line has the discontinuity of slope at X ¼ 0. The beam transverse deflection Y(X) and
its derivative of the second order are even and so they are continuous. The derivatives of the first order and the
third order are odd functions. Their values do not tend to zero as X-0. Therefore, these derivatives are
discontinuous. They, respectively, experience the sudden changes of A0B and �A0(1�B2) as soon as the beam
dimensionless longitudinal co-ordinate X changes its negative sign for positive one and passes the point where
the concentrated load is applied.
Fig. 3. Beam centre-line: (a) the centre-line deflection; (b) the centre-line slope; 1—s ¼ 0:4, 2—s ¼ 0:2, 3—s ¼ 0.
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Return to dimension notation and withdraw the uniform elastic foundation taking u ¼ 0. These give two
equalities R[dy(x)/dx] ¼ a0 and [d3y(x)/dx3] ¼ a0/(EJ) where square brackets indicate the difference between
the bracketed quantities on either side of the limit x. For example, [dy(x)/dx] is dy(x+0)/dx�dy(x�0)/dx.
Replace the distributed load q(x)dx with the concentrated load �a0. Once more taking into account the beam
segment equilibrium yields [Q] ¼ �a0.

This gives two equalities

R½dyðxÞ=dx� ¼ �½Q�; EJ½d3yðxÞ=dx3� ¼ ½Q� (2.6)

that were postulated in Ref. [10]. The first shows that Timoshenko beam centre-line experiences the
discontinuity of slope that disappears if R tends to infinity and the beam becomes an Euler–Bernoulli beam.
The second shows that both Timoshenko and Euler–Bernoulli beams’ centre-lines experience the same sudden
change in their third derivatives at a point where a concentrated transverse force is applied. If one calculates
the beam transverse deflection by means of Fourier’s or similar integral transformation technique and uses the
Dirac delta-function, then the equalities (2.6) are automatically taken into account. Otherwise, they should be
imposed.

3. Interaction among moving tandem wheels via a rail and Ripke’s railway track schemes

Consider a rail as Timoshenko beam of linear density r0. The rail rests on sleepers with spacing l. Each sleeper
is modelled as a single concentrated mass rl, supported by a spring of stiffness ul and a dashpot of viscous
damping rl, in parallel. Values r, u and r are parameters of the corresponding uniform visco-elastic foundation.
Now the rail upward deflection y(x, t) also depends on the time t. Variable x is the longitudinal co-ordinate, let
x ¼ 0 correspond to a sleeper position. The sleeper at x ¼ 0 acts on the rail with reaction �k(0, t), where [5,12]

kð0; tÞ ¼ rl q2yð0; tÞ=qt2 þ rl qyð0; tÞ=qtþ ulyð0; tÞ. (3.1)

Replace values y(x) and q(x) in Eq. (2.3) with y(x, t) and qðx; tÞ � r0 q
2yðx; tÞ=qt2, where the first item is an

external time-dependent load applied to the rail and the second one represents inertia force due to the rail
translation movement. Let value m(x) now represent the distributed moment �ðr0J=AÞ q2j=qt2 of inertia force
due to the rail cross-section rotation.

Making some usual transformations yields the following partial differential equation:

EJ
q4yðx; tÞ
qx4

þ r0
q2yðx; tÞ

qt2
� r0

J

A
þ

EJ

R

� �
q4yðx; tÞ
qx2 qt2

þ
r20J
RA

q4yðx; tÞ

qt4

¼ qðx; tÞ þ
r0J
RA

q2qðx; tÞ

qt2
�

EJ

R

q2qðx; tÞ

qx2
ð3:2Þ

that governs the rail forced vertical deflection. If the external load is absent, then qðx; tÞ ¼ 0 and the right side
of this equation vanishes. In this case, Eq. (3.2) reduces to the well-known single Timoshenko equation of the
beam free oscillations [9].

Any numerical simulation of wheel–rail interaction supposes the railway track length h to be finite.
Therefore, boundary conditions must be imposed on the track origin and end. Let x ¼ 0 corresponds to the
origin, the rail track length h ¼ Hl, where H is an integer, and x ¼ h corresponds to the rail track end. In
Ref. [6], two different conditions yðh; tÞ ¼ �yð0; tÞ were imposed on the track origin and end. In both cases,
one can schematically present the railway track as a ring. In the first case, the ring looks like a squirrel wheel

(or cage) that is shown in Fig. 4. In the second case, the track rests on Moebius’ surface shown in Fig. 5. If a
steady-state wheel–rail interaction takes place and an analytical simulation is considered, then the ring track
can be extended into an infinite track imposing two different periodicity conditions

yðxþ h; tÞ ¼ yðx; tÞ, (3.3)

yðxþ h; tÞ ¼ �yðx; tÞ (3.4)

related to the squirrel wheel scheme and Moebius’ surface scheme. In both cases, one can consider an infinite
row of wheels that move with the same constant speed v0 over the track at the same distance h without
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Fig. 4. Squirrel wheel scheme.

Fig. 5. Moebius’ surface scheme.

Fig. 6. Row of wheels.
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detachment. Every wheel has mass m0 and links the rail via a linear weightless contact spring having stiffness
kc. The positive direction of the wheel–rail contact force that has period l/v0, stretches the contact spring
and acts contrarily to the wheel and the rail is shown in Fig. 6. Let t ¼ 0 correspond to passage of the
zero wheel over the point x ¼ 0. Present the periodic force between the zero wheel and the rail in the form of
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a Fourier series

f 0ðtÞ ¼ �a0

Xþ1
n¼�1

Fn exp
i2pnv0t

l

� �
; f 0ðtþ l=v0Þ ¼ f 0ðtÞ. (3.5)

Dimensionless coefficients Fn are unknown. Every item of this series has the same period l/v0.
In the case of the squirrel wheel scheme, every wheel in the row bears the same static downward load (or

constant force) of a magnitude a0 as shown in Fig. 6. In the case of Moebius’ surface scheme, one can consider
the zero wheel to be loaded with the same downward force along with all wheels with an even number and the
rest wheels to be loaded with the upward forces of the same magnitude a0. Further, consider Ripke’s railway
track schemes separately.

4. Squirrel wheel scheme

Thus, the same equidistant wheels pass over the rail arbitrary point x with the same constant speed. The
wheel passing frequency is v0/h. The first wheel is left behind the zero wheel by time h/v0. Therefore, the
contact forces, related to these two wheels (see Fig. 6), are bound with the following relationship
f 1ðtÞ ¼ f 0ðt� h=v0Þ. Repeatedly using this relationship m times, one can conclude that the value f 0ðt�mh=v0Þ

equals the contact force, related to the wheel with number m. Thus, the rail total load due to the infinite row of
the same equidistantly moving wheels is

qðx; tÞ ¼
Xþ1

m¼�1

f 0ðt�mh=v0Þdðx� v0tþmhÞ. (4.1)

The Dirac delta-function dðx� v0tþmhÞ marks the contact point xm ¼ v0t�mh that corresponds to the
wheel with number m. The right-hand side of equality (4.1) does not change if one simultaneously replaces t

with tþ h=v0 and m with mþ 1, as well as t with tþ l=v0 and x with xþ l. Thus, the rail total load due to the
infinite row of the moving wheels obeys two following periodicity conditions:

qðx; tþ h=v0Þ ¼ qðx; tÞ; qðxþ l; tþ l=v0Þ ¼ qðx; tÞ.

The latter represents a particular case of the more general condition related to a moving harmonic force [5].
Iterating the latter H times yields qðxþ h; tþ h=v0Þ ¼ qðx; tÞ. Then, using the former yields qðxþ h; tÞ ¼ qðx; tÞ.
Due to Eq. (3.2), the rail steady-state vertical deflection y(x, t) obeys both periodicity conditions as well as the
third expressed in (3.3). Two periodicity conditions yðx; tþ h=v0Þ ¼ yðx; tÞ and yðxþ l; tþ l=v0Þ ¼ yðx; tÞ allow
one to restrict the following consideration with the time interval 0ptph/v0 and the rail segment 0pxpl.

The sleeper reaction considered reduces to the single force �k(0, t) and so the moment M in the rail cross-
section is continuous. The force Q in the rail cross-section experiences the sudden change �k(0, t) due to the
sleeper reaction at x ¼ 0. In accordance with equalities (2.1) and (2.2), the value �Rqyðx; tÞ=qx does the same,
while the following equalities take place:

q2yðx; tÞ

qx2
¼

M

EJ
�

1

R
qðx; tÞ � r0

q2yðx; tÞ
qt2

� �
,

q3yðx; tÞ

qx3
¼

1

EJ
R j�

qyðx; tÞ

qx

� �
þ

r0J
A

q2j
qt2

� �
�

1

R

qq ðx; tÞ

qx
� r0

q3yðx; tÞ
qx qt2

� �
.

The rail vertical deflection y(x, t), the angle j of the rail cross-section rotation and their derivatives with
respect to t are continuous at x ¼ 0. Suppose at this stage that the external load q(x, t) and its derivatives with
respect to t are continuous. In accordance with the previous equalities, the value q2yðx; tÞ=qx2 is continuous,
while the following relationship takes place:

EJ

R

q3yðx; tÞ

qx3

� �
¼ �

qyðx; tÞ

qx

� �
þ w

q3yðx; tÞ

qx qt2

� �
; w ¼

r0EJ

R2
.

The coefficient w in this relationship is very small and so the last term can be omitted. Thus,

EJ½q3yðx; tÞ=qx3� ¼ �R½qyðx; tÞ=qx� ¼ �kð0; tÞ,
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The rail deflections y(0, t) and yðl; tþ l=v0Þ to the left of the adjacent sleepers equal each other. To pose on
the segment 0pxpl a boundary-value problem for the partial differential equation (3.2), it should be taken
into account the values, related to the right of the origin x ¼ 0 and to the left of the end x ¼ l. Therefore, the
following boundary conditions take place:

qjyðl; tþ l=v0Þ=qxj ¼ qjyð0; tÞ=qxj ; j ¼ 0; 2,

qyðl; tþ l=v0Þ=qx ¼ qyð0; tÞ=qx� kð0; tÞ=R,

q3yðl; tþ l=v0Þ=qx3 ¼ q3yð0; tÞ=qx3 þ kð0; tÞ=ðEJÞ. ð4:2Þ

The last two boundary conditions include the above-mentioned sudden change.
Only the zero wheel occurs in the rail segment at the time interval. The infinite sum in the right-hand side of

expression (4.1) contains only one non-zero item f 0ðtÞdðx� v0tÞ that corresponds to m ¼ 0. Taking into
account expression (3.5) yields

qðx; tÞ ¼ �a0

Xþ1
n¼�1

Fnqnðx; tÞ; qnðx; tÞ ¼ exp
i2pnv0t

l

� �
dðx� v0tÞ. (4.3)

Due to linearity of the problem considered, any two loads act on the rail independently from each other and
so the rail vertical deflection can be presented in the following form:

yðx; tÞ ¼ �a0

Xþ1
n¼�1

F nynðx; tÞ. (4.4)

Value yn(x, t) designates the rail transverse deflection caused by the load qn(x, t) and obeys the boundary
conditions (4.2). Values yn(x, t) and qn(x, t) obey Eq. (3.2).

Now proceed to the following new dimensionless variables: the time T ¼ v0t=l and the longitudinal
co-ordinate X ¼ x=l. Note that dimensionless longitudinal co-ordinate, related to the zero wheel
X 0 ¼ x0=l ¼ v0t=l, coincides with T. Then, take into account that dðlðX � TÞÞ ¼ dðX � TÞ=l and dðX � TÞ ¼

dðT � X Þ (see, for example, Ref. [3]). The following dimensionless value Y nðX ;TÞ ¼ ynðx; tÞ=l obeys two
periodicity conditions:

Y nðX þ 1;T þ 1Þ ¼ Y nðX ;TÞ; Y nðX ;T þHÞ ¼ Y nðX ;TÞ (4.5)

partial differential equation and boundary conditions

q4Y nðX ;TÞ

qX 4
þ a

q2Y nðX ;TÞ

qT2
� ðbþ gÞ

q4Y nðX ;TÞ

qX 2 qT2
þ bg

q4Y nðX ;TÞ

qT4

¼ A0 1þ c b
q2

qT2
�

q2

qX 2

� �� �
exp ði2pnTÞ dðX � TÞ; ð0pXp1Þ, ð4:6Þ

A0 ¼ a0l2=ðEJÞ; a ¼ r0v
2
0l

2=ðEJÞ; b ¼ r0v
2
0=ðEAÞ; g ¼ r0v20=R; c ¼ g=a,

qjY nð1;T þ 1Þ=qX j ¼ qjY nð0;TÞ=qX j ; j ¼ 0; 2,

qY nð1;T þ 1Þ=qX ¼ qY nð0;TÞ=qX � cKð0;TÞ,

q3Y nð1;T þ 1Þ=qX 3 ¼ q3Y nð0;TÞ=qX 3 þ Kð0;TÞ, ð4:7Þ

Kð0;TÞ ¼ K2q
2Y nð0;TÞ=qT2 þ K1qY nð0;TÞ=qT þ K0Y nð0;TÞ,

K0 ¼ ul4=ðEJÞ;K1 ¼ rv0l3=ðEJÞ;K2 ¼ rv20l2=ðEJÞ.

Value K(0, T) is the dimensionless sleeper reaction. In accordance with the second periodicity condition, the
dimensionless value Yn(X, T) can be presented in the form of the following Fourier series:

Y nðX ;TÞ ¼
Xþ1

s¼�1

Cs;nðX Þ expðiFsTÞ; Fs ¼ 2ps=H. (4.8)
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Calculate the unknown Fourier coefficients Cs;nðX Þ. To this end, multiply the first periodicity condition
(4.5), the partial differential equation (4.6) and the four boundary conditions (4.7) by the factor
expð�iFsTÞdT=H and integrate the products with respect to T over the segment 0pTpH. These integrations
are similar to the Fourier integral transformation considered in Section 2. The integration of the partial
differential equation automatically takes into account the sudden changes in derivatives of the rail vertical
deflection that arise due to the moving vertical concentrated force applied to the rail. The integration gives the
following periodicity condition:

expðiFsÞCs;nðX þ 1Þ ¼ Cs;nðX Þ (4.9)

and yields the boundary-value problem for the fourth-order ordinary differential equation

d4Cs;nðX Þ

dX 4
þ ðBþ GÞ

d2Cs;nðX Þ

dX 2
þ ðBG� AÞCs;nðX Þ ¼

A0

H
ð1þ cðF2

s;n � BÞÞ exp ð�iFs;nX Þ (4.10)

with four boundary conditions:

expðiFsÞd
jCs;nð1Þ=dX j ¼ djCs;nð0Þ=dX j ; j ¼ 0; 2;

expðiFsÞdCs;nð1Þ=dX ¼ dCs;nð0Þ=dX � cKðFsÞCs;nð0Þ;

expðiFsÞd
3Cs;nð1Þ=dX 3 ¼ d3Cs;nð0Þ=dX 3 þ KðFsÞCs;nð0Þ;

(4.11)

Fs;n ¼ Fs � 2pn; A ¼ aF2
s ; B ¼ bF2

s ; G ¼ gF2
s ; KðFsÞ ¼ �F2

s K2 þ iFsK1 þ K0.

The polynomial KðFsÞ presents the dynamic behaviour of the simplest one-mass support of the rail. Sometimes,
high-frequency oscillations (for example, due to rail corrugation) should be considered. In these cases, different
parts of the rail support can move diversely. Therefore, the support should be presented
with two or more masses (see Ref. [11] for example). The polynomial KðFsÞ for such a case can be easily
obtained. More complex supports can be included in the study as well. For example, a flexible sleeper can be
presented by means of a transcendental function instead of polynomial KðFsÞ [12]. To avoid the sudden changes
in partial derivatives of the rail vertical deflection, one can replace the Dirac delta-function with the Gaussian
normal distribution function (see Section 2 and Appendix A). In theory, the contact patches become infinite and
overlap each other. However, the doubled Gaussian normal distribution parameter can be taken as the contact
patch size. The replacement results in the appearance of the factor expð�F2

s;nS2=2Þ with S ¼ s=l in the right-hand
side of Eq. (4.10). This factor is near unity and cannot remarkably influence the results. However, the contact
patch size may be important in the case of interaction between corrugated wheels and rails [13,14].

5. Solving the boundary-value problem

Eq. (4.10) has constant coefficients and the exponential function on the right-hand side. It can be solved in
usual way [5,12]. The solution determines the Fourier coefficients Cs;nðX Þ only for X belonging to the segment
0pXp1. Otherwise, these coefficients can be calculated by means of equality (4.9). If the integer s ¼ 0, then
Fs ¼ 0 too as well as A, B and G. In this case, the left-hand side of the differential equation (4.10) retains only
the first item. Therefore, two cases s ¼ 0 and s 6¼0 will be considered separately. A solution to Eq. (4.10) with
s 6¼0 and the boundary conditions (4.11) is

Cs;nðX Þ ¼ A0 expð�iFs;nX Þ � JðFsÞNðX ;FsÞ
� �

Ps;n=H; 0pXp1, (5.1)

NðX ;FsÞ ¼
1� cs22
2ðs21 þ s22Þ

sinhðs1ð1� X ÞÞ þ expð�iFsÞ sinhðs1X Þ
s1ðcos Fs � cosh s1Þ

�
1þ cs21
2ðs21 þ s22Þ

sinðs2ð1� X ÞÞ þ expð�iFsÞ sinðs2X Þ
s2ðcos Fs � cos s2Þ

�
; JðFsÞ ¼

KðFsÞDðFsÞ

KðFsÞ þDðFsÞ
,

DðFsÞ ¼ 1=Nð0;FsÞ; 2s22;1 ¼ ððB� GÞ � 4AÞ1=2 � ðBþ GÞ; Ps;n ¼ ð1þ cðF2
s;n � BÞÞ=Ls;n.
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Value Ls,n will be defined further. Take into account the following Fourier expansions [5,12]:

expðiFsX ÞNðX ;FsÞ ¼
Xþ1

m¼�1

Qs;m expði2pmX Þ; 0pXp1; D�1ðFsÞ ¼
Xþ1

m¼�1

Qs;m, (5.2)

Qs;m ¼ ð1þ cððF2
s;m � B� GÞÞ=Ls;m; Ls;m ¼ F4

s;m � ðBþ GÞF2
s;m þ BG� A.

The last expansion shows that the value DðFsÞ is real while the value KðFsÞ with any positive damping
parameter r is an imaginary one. Thus, if one adopts the integer s 6¼0 and any positive r, then the value
KðFsÞ þDðFsÞ does not turn into zero and so the value JðFsÞ can be calculated. Substituting the first
expansion into the solution (5.1) to the boundary-value problem for the ordinary differential equation (4.10)
presents this solution in the next form

Cs;nðX Þ ¼
A0

H
expð�iFs;nX Þ � JðFsÞ

Xþ1
m¼�1

Qs;m expð�iFs;mX Þ

 !
Ps;n. (5.3)

The right-hand side of equality (5.3) complies with the periodicity condition (4.9). Thus, the solution in the last
form can be used with any X. Expressions (5.1)–(5.3) become invalid as soon as s ¼ 0. In this case, F0;n ¼ �2pn

and the periodicity condition (4.9) reduces to the following equality C0;nðX þ 1Þ ¼ C0;nðX Þ that defines a periodic
function whose period equals unity. Now, Eq. (4.10) and boundary conditions (4.11) take the following form:

d4C0;nðX Þ=dX 4 ¼ A0ð1þ cð2pnÞ2Þ expði2pnX Þ=H; 0pXp1, (5.4)

djC0;nð1Þ=dX j ¼ djC0;nð0Þ=dX j ; j ¼ 0; 2,

dC0;nð1Þ=dX ¼ dC0;nð0Þ=dX � cK0C0;nð0Þ,

d3C0;nð1Þ=dX 3 ¼ d3C0;nð0Þ=dX 3 þ K0C0;nð0Þ. ð5:5Þ

Solving the boundary-value problems (5.4) and (5.5) gives the next two expressions

C0;nðX Þ ¼ A0P0;nðexp ði2pnX Þ � 1Þ=H; na0, (5.6)

C0;0ðX Þ ¼
A0

H

1

K0
þ

c
2

X þ
1� 12c

24
X 2 �

1

12
X 3 þ

1

24
X 4

� �
.

The first of them presents the periodic function that complies with the periodicity condition written above and,
therefore, can be immediately used with any X. The latter adopts the same value as X ¼ 0 or 1. Expanding
C0;0ðX Þ into a Fourier series gives a periodic function

C0;0ðX Þ ¼
A0

H

1

K0
þ

c
12
þ

1

720
�
X
ma0

P0;m expði2pmX Þ

 !
(5.7)

that is valid with any X. Substituting expressions (5.3), (5.6) and (5.7) into equality (4.8) and changing order of
summation yield

Y nðX ;TÞ ¼ A0

Xþ1
m¼�1

expði2pmX ÞW ðm; n;T � X Þ, (5.8)

W ðm; n;T � X Þ ¼
�1

H

X
sa0

JðFsÞQs;mPs;n expðiFsðT � X ÞÞ; mana0, (5.9)

W ðn; n;T � X Þ ¼
1

H

X
sa0

ð1� JðFsÞQs;nÞPs;n expðiFsðT � X ÞÞ; na0, (5.10)

W ðm; 0;T � X Þ ¼
�1

H
P0;m þ

X
sa0

JðFsÞQs;mPs;0 expðiFsðT � X ÞÞ

 !
; ma0, (5.11)

W ð0; 0;T � X Þ ¼
1

H

1

K0
þ

c
12
þ

1

720
þ
X
sa0

ð1� JðFsÞQs;0ÞPs;0 expðiFsðT � X ÞÞ

 !
. (5.12)
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Expressions (5.8)–(5.12) contain some infinite sums that depend on integer-valued variables m, n and s. To
make computations in an appropriate way, one should reduce these to the finite sums subject to the following
remarks. The discrete variable Fs;n ¼ 2pðs=H � nÞ turns into zero as s ¼ nH. Therefore, the quantities Ls,n, Ps,n

and Qs,n, depending on Fs,n, quickly change their values as soon as the integer-valued variable s passes the integer
nH. Thus, the constraints for s should strongly exceed this integer. The integer H determines the distance h ¼ Hl

between two adjacent moving wheels whose interaction via the rail track is small enough and so can be
disregarded. The integer H must significantly exceed value jX�Tj. Thus, the computation time consumed to
calculate these series increases along with this value.
6. Moebius’ surface scheme

Now the wheels loaded with the vertical contrarily directed forces of the same magnitude pass over the rail
arbitrary point x with the same constant speed without detachment. Value ð�1Þmf 0ðt�mh=v0Þ equals the
contact force, related to the wheel with number m. Thus, the rail total load due to the infinite row of wheels
obeys two following periodicity conditions:

qðx; tþ h=v0Þ ¼ �qðx; tÞ; qðxþ l; tþ l=v0Þ ¼ qðx; tÞ.

The rail steady-state vertical deflection y(x, t) complies with the similar periodicity conditions that
allow one again to pose a boundary-value problem for the partial differential equation (3.2). Proceeding
to the dimensionless variables introduced in Section 4 yields again the partial differential equation (4.6)
and five boundary conditions. The first Y nðX ;T þHÞ ¼ �Y nðX ;TÞ is new, but the rest are the same. Value
ZnðX ;TÞ ¼ expðipT=HÞY nðX ;TÞ complies with the periodicity condition ZnðX ;T þHÞ ¼ ZnðX ;TÞ and so can
be presented in the form of the previous Fourier series. Replacing ZnðX ;TÞ with Y nðX ;TÞ yields the following
equality:

Y nðX ;TÞ ¼
Xþ1

s¼�1

C�s;nðX Þ expðiF
�
s TÞ

that is similar to equality (4.8). New Fourier coefficients C�s;n obey the same Eq. (4.10) and boundary conditions
(4.11) with

F�s ¼ Fs � p=H ¼ pð2s� 1Þ=H ; F�s;n ¼ F�s � 2pn ¼ pð2s� 2n� 1Þ=H; F�1�s ¼ �F
�
s .

Both F�s and F�s;n never equal zero. The coefficients C�s;n and value Y nðX ;TÞ obey the same expressions (5.3) and
(5.8) that now depend on the variables Fs ¼ pð2s� 1Þ=H and Fs;n ¼ pð2s� 2n� 1Þ=H instead of the previous Fs

and Fs;n. Only the following two expressions:

W ðm; n;T � X Þ ¼
�1

H

Xþ1
s¼�1

JðFsÞQs;mPs;n exp iFsðT � X Þð Þ; man, (6.1)

W ðn; n;T � X Þ ¼
1

H

Xþ1
s¼�1

ð1� JðFsÞQs;nÞPs;n exp ðiFsðT � X ÞÞ (6.2)

replace the previous four expressions (5.9)–(5.12).
7. Interaction between the wheel and the rail

Further, consider two Ripke’s schemes simultaneously. Divide equality (4.4) by l, insert Y nðX ;TÞ expressed
by equality (5.8). Changing the order of summation yields

Y ðX ;TÞ ¼ yðx; tÞ=l ¼ �A0

Xþ1
m¼�1

exp ði2pmX Þ
Xþ1

n¼�1

F nW ðm; n;T � X Þ. (7.1)
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Values X and T are arbitrary numbers. Substituting T for X yields the following rail dimensionless vertical
deflection at the contact point related to the zero wheel:

Y ðT ;TÞ ¼ �A0

Xþ1
m¼�1

exp ði2pmTÞ
Xþ1

n¼�1

F nW ðm; n; 0Þ. (7.2)

The zero wheel experiences the action of the downward load �a0 and the vertical contact force f0(t)
presented in the form of Fourier series (3.5). The following differential equation:

m0
d2y0ðtÞ

dt2
¼ �a0 þ a0

Xþ1
m¼�1

Fm exp
i2pmv0t

l

� �
(7.3)

governs the vertical deflection of the zero wheel and has a finite periodic solution that depends on the
unknown Fourier coefficients Fm only if F0 ¼ 1. Proceeding to the dimensionless variables yields the following
dimensionless vertical deflection of the zero wheel and contact force

Y 0ðTÞ ¼ y0ðtÞ=l ¼ �A0

X
ma0

F m expði2pmTÞ

M0ð2pmÞ2
; M0 ¼ m0v

2
0l=ðEJÞ, (7.4)

F0ðTÞ ¼ f 0ðtÞl
2=ðEJÞ ¼ �A0

Xþ1
m¼�1

F m expði2pmTÞ. (7.5)

The contact force f0(t) extends the contact spring and increases its length by f0(t)/kc. Therefore, this force,
the zero wheel and the rail vertical deflections at the contact point are bound with the equality
y0ðtÞ ¼ yðv0t; tÞ þ f 0ðtÞ=kc. The dimensionless values Y 0ðTÞ; Y ðT ;TÞ and F0(T) presented in the form of
series (7.2), (7.4) and (7.5) comply with the following

Y 0ðTÞ ¼ Y ðT ;TÞ þ F0ðTÞ=Kc; Kc ¼ kcl3=ðEJÞ

that is satisfied provided the coefficient attached to the harmonic function expði2pmTÞ;ma0, in the left-hand
side and such a coefficient in the right-hand side equal each other.

Thus, taking again F0 ¼ 1, yields an infinite set of linear algebraic equations

1

Kc

�
1

M0ð2pmÞ2

� �
Fm þ

X
na0

FnW ðm; n; 0Þ ¼ �W ðm; 0; 0Þ; ma0 (7.6)

that include the infinite set of unknown Fourier coefficients Fm, m 6¼0.
The complex value Fn and the complex value F�n are conjugate. Therefore, the real value

Fn exp ði2pnTÞ þ F�n expð�i2pnTÞ

represents the nth harmonics of the dimensionless contact force between the zero wheel and the rail, its
amplitude equals 2jFnj. Taking into account only N harmonics reduces the infinite set of Eq. (7.6) to a finite
system of equations that contain a finite set of unknown Fourier coefficients. Solving the system yields these
Fourier coefficients. The greater the integer N is, the greater the accuracy that can be achieved. It is reasonable
to take into account waves in the rail centre-line with wavelengths from l/N to Hl to gain the same accuracy.

Thus, the calculations should be made with integers m, n and s complying with the two constraints �Npm,
npN and 1�NHpspNH. In accordance with the remarks in Section 6, the last two constraints should be
significantly wider. Finally, let 1�2NHpsp2NH.

8. Interaction among the wheels via the track and comparing two Ripke’s schemes

Start with the squirrel wheel scheme. Fig. 7 shows the magnitude of the dimensionless amplitude 2jFnj,
n ¼ 1; 2, versus the wheel speed v0, calculated with N ¼ 5 and the following parameters: EJ ¼ 3:57� 106 Nm2,
A ¼ 0:006m2, r0 ¼ 48kg=m, k0 ¼ 0:34, l ¼ 0:8m, u ¼ 40� 106 N=m2, r ¼ 43:6 kg=m, r ¼ 26� 103 N s=m2

that correspond to light-rail track and the wheel mass m0 ¼ 700 kg. Continuous curves correspond to distance
h ¼ 5l between two adjacent wheels while dotted curves do to h ¼ 10l. Distinction between these curves is due to
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Fig. 7. Contact force dimensionless amplitudes: continuous lines—h ¼ 5l, dotted lines—h ¼ 10l.
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difference in the wheel interaction via the track. Transition to h ¼ 15l causes only a barely visible change in the
curve. Thus, the calculations show that the interaction among the wheels via the track can be disregarded as
soon as hX10l. In this case, every wheel in the row can be considered as a single one. Taking H ¼ h=l ¼ 10
yields the following constraints: �99psp100. Thus, only 200 terms should be retained in the series (6.1)
and (6.2).

The same results are obtained from the Moebius’ surface scheme. Since this is simpler it is recommended to
describe the interaction between a single moving wheel and the rail. Consider transition from the row of
wheels to a single wheel in detail. The discrete variable Fs ¼ pð2s� 1Þ=H determines an infinite set of isolated
points spaced by distance 2ps=H. The density of these points H=2p increases as H ¼ h=l !þ1. Therefore,
the discrete variable Fs can be replaced with a continuous variable F. Then, the two series (6.1) and (6.2) turn
into the two infinite integrals:

W ðm; n;T � X Þ ¼
�1

2p

Z þ1
�1

JðFÞQmðFÞPnðFÞ expðiFðT � X ÞÞdF; man,

W ðn; n;T � X Þ ¼
1

2p

Z þ1
�1

ð1� JðFÞQnðFÞÞPnðFÞ exp ðiFðT � X ÞÞdF,

which can be immediately obtained by means of Fourier integral transformation technique [5,12]. In these
expressions, the integers m and n play the same role as before. Functions PnðFÞ and QnðFÞ replace the similar
values Ps,n and Qs,n. These functions can be calculated in the same way. The following two constraints
�4pNpFp4pN replace the previous ones.

If only oscillations of a single moving wheel are studied, then T ¼ X and the function exp(iF(T�X)) turns
into unity and both the Fourier transformation technique and the Fourier series technique consume the same
computation time. In the case of a two-axle bogie, the difference T�X equals the bogie dimensionless base B0

(see Section 10), a period of that function is 2p/B0. This period must contain at least eight integration steps d

to compute this function. Thus, d ¼ p=ð4B0Þ and the number of the integration steps is 32NB0. Let B0 ¼ 5. In
this case, the number of the integration steps equals 800 and one needs four times greater computation time.
Thus, series (6.1) and (6.2) are the computation time-saving approximation to those integrals.

9. Variation in the rail track static stiffness over a sleeper span

Return to squirrel wheel scheme now. Let the parameters r0, r and r become zero. Then, the dimension-
less parameters A, B and G also become zero, while values KðFsÞ and 1=DðFsÞ become K0 and
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ð1� 6cÞ=12=ðcos Fs � 1Þ þ 1=4=ðcos Fs � 1Þ2. In this case, the rail deflection is quasi-static. Further, multiply
all the items in equalities (7.6) by the dimensionless parameter M0 and, then, turn the wheel mass m0 into zero
along with M0. Thus, no inertia force is taken into account in this section. Now equalities (7.6) reduce to the
following: F m ¼ 0 for all non-zero m while F0 ¼ 1. Therefore, the equality (5.8) reduces to the next formula

Y 0ðX 0;X 0Þ ¼ �A0

Xþ1
m¼�1

expði2pmX 0ÞW ðm; 0; 0Þ, (9.1)

where the dimensionless time T is replaced with the equal dimensionless co-ordinate X0 that marks the point,
where the constant force applied to the rail. Formula (9.1) leads to the next

CðX 0Þ ¼ �A0=Y 0ðX 0;X 0Þ ¼
Xþ1

m¼�1

expði2pmX 0ÞW ðm; 0; 0Þ

 !�1
. (9.2)

Dimensionless value CðX 0Þ represents the track stiffness per rail at the point X0.
Fig. 8 shows variation in the dimensionless stiffness C(X0) over the segment 0pXp1, related to the sleeper

span. Curve 1 presents results of calculations that take into account the shear deformation in the rail cross-
section. The greatest value equaled 8.669 is achieved at the points 0 and 1 that correspond to adjacent sleepers.
The lowest value, which equals 8.050 and occurs at the point 0.5, relates to the sleeper midspan. The variation
in the track stiffness is 0.0741 of the average stiffness. Curve 2 is calculated without taking into account the
shear deformation in the rail cross-section. The greatest value equals 8.976 and the lowest is 8.678. The
average stiffness slightly increases because the shear deformation is absent, but the relative variation in the
stiffness drops to 0.0338 and becomes less than half the previous value. Only the discontinuity of the rail
centre-line slope due to the shear deformation in the rail cross-section causes this difference. To reduce the
variation in the track stiffness, a similar rail with the greater cross-section area A can be taken. In this case, the
rail shear stiffness R increases in proportion to A, while the rail bending stiffness EJ does in proportion to A2

and so the rail bending deformation quickly reduces. Thus, influence of the shear deformation in the rail cross-
section on the variation in the track stiffness over the sleeper span increases.
Fig. 8. Variation in the track static stiffness: 1—calculated with taking into account shear deformation in the rail cross-section; and 2—

calculated without taking into account shear deformation in the rail cross-section.
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10. Bogie vertical deflection and wheel–rail simultaneous oscillations

Fig. 9 shows the simplified bogie model that includes only the primary suspension of stiffness c0
and damping r0 per wheel. The frame is modelled with a rigid weightless rod, bearing two masses m1. Each
mass is separated from the other by distance b1 and presents the frame translation inertia per wheel. The
distance b1 depends on the frame rotational inertia. The wheels are separated by the bogie base b0.
Mass m0 represents the unsprung mass per wheel; v0 is the bogie speed and v0t now denotes the bogie centre
position at the time t. Fig. 9 shows positive directions of two periodic contact forces f7(t) that relate to the
front and rear wheels, pass over the point x ¼ 0 at the time �b0=ð2v0Þ and can be presented in the form of
Fourier series

f �ðtÞ ¼ �a0

Xþ1
n¼�1

F�n exp
ipnð2v0t� b0Þ

l

� �
.

As before, a0 is the static load per wheel, dimensionless coefficients F�n (except F�0 ¼ 1) are unknown.
Values y�ðtÞ present upward periodic deflections from the reference state that relate to the front wheel and

the rear wheel. Similarly, values z�ðtÞ present the deflections of the rod’s front and rear ends. Consider the
bogie ‘bouncing’ and ‘galloping’ separately. Let

f �ðtÞ ¼ f 1ðtÞ � f 2ðtÞ; y�ðtÞ ¼ y1ðtÞ � y2ðtÞ; z�ðtÞ ¼ z1ðtÞ � z2ðtÞ.

The first term in each right-hand side corresponds to the bogie bouncing and the second does to the bogie
galloping. In the first case, both wheels oscillate in phase and the bogie frame experiences translation
oscillations. Therefore,

m0
d2y1ðtÞ

dt2
¼ �a0 � f 1ðtÞ þ c0ðz1ðtÞ � y1ðtÞÞ þ r0

dz1ðtÞ

dt
�

dy1ðtÞ

dt

� �
,

m1
d2z1ðtÞ

dt2
¼ �c0ðz1ðtÞ � y1ðtÞÞ � r0

dz1ðtÞ

dt
�

dy1ðtÞ

dt

� �
Fig. 9. Simplified bogie model.
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which govern the values y1(t) and z1(t). Excluding z1(t) by means of cross differentiation yields a single
equation (m is an integer)

m0m1
d4y1ðtÞ

dt4
þ ðm0 þm1Þr0

d3y1ðtÞ

dt3
þ ðm0 þm1Þc0

d2y1ðtÞ

dt2

¼
a0

2

X
ma0

m1
2ipmv0

l

� �2

þ r0
2ipmv0

l

� �
þ c0

 !

� Fþm exp
ipmð2v0tþ b0Þ

l

� �
þ

�
F�m exp

ipmð2v0t� b0Þ

l

� ��

that contains only the value y1(t). Substituting f2(t) and m2 ¼ b2
1m1=b2

0 instead of f1(t) and m1, one can obtain a
similar equation that governs y2(t). Solving these equations and proceeding to the dimensionless forces
F7(T) ¼ f 7(t)l2/(EJ) and vertical deflections Y jðTÞ ¼ yjðtÞ=l yield

F�ðTÞ ¼ �A0

Xþ1
m¼�1

F�m expðipmð2T � B0ÞÞ, (10.1)

Y jðTÞ ¼ �
A0

2

X
ma0

W jðmÞ Fþm expðipmð2T þ B0ÞÞ � ð�1Þ
j

�
F�m expðipmð2T � B0ÞÞ

�
,

W jðmÞ ¼
Mjð2pmÞ2 � iR02pm� C0

M0Mjð2pmÞ4 � ðM0 þMjÞð2pmÞ2ðiR02pmþ C0Þ
; j ¼ 1; 2, (10.2)

B0 ¼ b0=l; C0 ¼ c0l3=ðEJÞ; R0 ¼ r0v0l
2=ðEJÞ; Mj ¼ mjv

2
0l=ðEJÞ; j ¼ 0; 1; 2.

If b1 ¼ b0, then m2 ¼ m1 as well as M2 ¼M1 and so W 1ðmÞ ¼W 2ðmÞ. In this case, two masses m1 that
present the bogie frame oscillate independently from each other and so the rigid weightless rod can be
removed. Thus, in such a case, the tandem wheels interact only via the track.

Now y(x, t) denotes the rail vertical deflection under the action of the contact forces f7(t). Proceeding to the
dimensionless values, replacing T by T7B0/2 in equality (5.8) and taking into account equality (10.1) yields
the following expression:

Y ðX ;TÞ ¼ �A0

Xþ1
n¼�1

Fþn Y nðX ;T þ B0=2Þþ
�

F�n Y nðX ;T � B0=2Þ
�

providing the rail steady-state dimensionless deflection under the action of the bogie wheels. Taking into
account expressions (6.1) and (6.2) and changing order of summation yield

Y ðX ;TÞ ¼ �A0

Xþ1
m¼�1

expði2pmX Þ
Xþ1

n¼�1

Fþn W ðm; n;T þ B0=2� X Þ
�

þ F�n W ðm; n;T � B0=2� X Þ
�
.

Two equalities y�ðtÞ ¼ yðv0t� b0=2; tÞ þ f �ðtÞ=kc bind the contact forces with the vertical deflections of the
wheels and the rail at the contact points. Proceed to the dimensionless form

Y 1ðTÞ � Y 2ðTÞ ¼ Y ðT � B0=2;TÞ þ F�ðTÞ=Kc; Kc ¼ kcl3=ðEJÞ. (10.3)

All items in both equalities (10.3) contain values expðipmð2T � B0ÞÞ, multiplied with certain
coefficients. These equalities are satisfied if the corresponding coefficients in the left equal the same
coefficients in the right. Substituting (10.1) and (10.2) into (10.3) and taking into account F�0 ¼ 1, yield the
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following infinite system of equations:

ð1=Kc �W 1ðmÞ �W 2ðmÞÞF
þ
m � ðW 1ðmÞ �W 2ðmÞÞF

�
m expð�i2pB0Þ

þ
X
na0

ðFþn W ðm; n; 0Þ þ F�n W ðm; n;�B0ÞÞ ¼ �W ðm; 0; 0Þ �W ðm; 0;�B0Þ

� ðW 1ðmÞ �W 2ðmÞÞF
þ
m expði2pB0Þ þ ð1=Kc �W 1ðmÞ �W 2ðmÞÞF

�
m

þ
X
na0

ðFþn W ðm; n;B0Þ þ F�n W ðm; n; 0ÞÞ ¼ �W ðm; 0; 0Þ �W ðm; 0;B0Þ

determining an infinite set of Fourier coefficients Fþm and F�m. Truncating the system and the set yields a finite
system, containing N pairs of equations to determine N pairs of the coefficients.

The previous railway track parameters and the following bogie parameters: m0 ¼ 700 kg, m1 ¼ 500 kg,
c0 ¼ 3� 106 N=m, r0 ¼ 560N s=m, b0 ¼ 1:8m and b1 ¼ 1:08m were used for calculations. Curves 1–3 in
Fig. 10 relate to the first, the second and the third dimensionless harmonics of the contact forces. These
harmonics have wavelength l/m and the dimensionless amplitudes 2jF�mj related to the static load per wheel.
The top curves correspond to the front wheel, the bottom curves do to the rear wheel. Curves 1 show that the
first amplitude achieves the greatest value that makes up more than 20% the static load per wheel at the main
critical speed near 120 km/h. The corresponding sleeper passing frequency is near 40Hz. A frequency of free
vertical oscillations of a stationary wheel set on the rail is near also 40Hz. The main critical speed corresponds
to resonance of a single wheel set on the rail. Thus, the broad peak at the speed near 120 km/h corresponds to
the similar peak arising due to interaction between a single wheel and a rail. It is seen an additional sharp
resonant peak near 40 km/h and the second near 60 km/h. These peaks relate to the natural frequencies of the
bogie frame bouncing and galloping. The wavelengths of the second and the third harmonics of the contact
forces, respectively, are 1 s and one-third of the sleeper spacing. Their dimensionless amplitudes achieve the
greatest values at 60 and 40 km/h. Due to different wavelengths the corresponding frequency of oscillations is
near 40Hz in both cases. These curves also have the sharp peaks, related to the bogie frame oscillations. The
Fig. 10. Wheel–rail contact force amplitudes (b1 ¼ 0:6b0): 1—m ¼ 1, 2—m ¼ 2, and 3—m ¼ 3.
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following presents results of additional calculations undertaken to study dependence on some parameters of
the parametric oscillations considered.

Fig. 11 shows similar curves calculated with b1 ¼ b0 ¼ 1:8m. In this case, the bogie frame bouncing and
galloping have the same natural frequency. Therefore, the above-mentioned two sharp resonant peaks move to
the speed 34 km/h and merge. Additional calculations have also shown that the broad peak height strongly
depends on the railway track damping while the sharp peak heights strongly depend on the bogie damping. If
the bogie damping is great, then these peaks disappear. If the bogie damping slightly exceeds a certain non-
zero level, then the peak heights are great. If the damping becomes slightly below this level, then the peaks
scatter into many separate points. This takes place due to the parametric nature of the frame oscillations that
become unstable in the last case. Another example of instability of a wheel moving with high speed is
presented in Ref. [15].

The wheel–rail contact force was calculated by means of expression (10.1). Fig. 12 shows distribution of the
downward force over two sleeper spans related to the rear wheel and b1 ¼ b0 ¼ 1:8m. Three bold curves mark
the sleeper positions. A vertical segment marks the wheel static load. The greatest variation in the contact
force relates to the above-mentioned speed 34 km/h. Hollows relate to the greater values of the contact force.
Peaks mark the lower values. The hollows are seen on the left of the sleepers and the peaks on the right. The
contact force between the rail and the wheel increases as the wheel approaches the sleeper. Then, reduction in
the force takes place. In presence of tangential stress, this can cause stick-slip effect and uneven wear both in
the rail and in the wheel.

The rail and the wheel are steel and both of them wear out in the same conditions. The rail wear and the
wheel wear represent a common process. However, they are usually considered apart [16,17]. The key question
is why the rail wear is periodic, but the wheel wear is not at the same time. The track periodicity that provides
fixing effect only to the rail and allows wavelengths equal l=m (m is again an integer) seems to be the single
answer to this question.
Fig. 11. Wheel–rail contact force amplitudes (b1 ¼ b0): 1—m ¼ 1, 2—m ¼ 2, and 3—m ¼ 3.
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Fig. 12. Wheel–rail contact force variation (b1 ¼ b0).
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11. Conclusions

Timoshenko beam properties were investigated. To this end, a single equation, that governs the beam
deflection, was derived. The vertical deflection of an infinite beam that rests on a uniform elastic foundation
and bears load conforming to a Gaussian normal distribution was calculated. If the Gaussian distribution
parameter tends to zero, then the load becomes concentrated and derivatives of the first and the third order
experience a sudden change.

An infinite row of identical wheels that move with the same constant speed over the track at the same
distance was considered and interaction among the wheels via the track was estimated. The calculations have
shown that the interaction among the wheels via the light-rail track can be disregarded as soon as the distance
between two consecutive wheels exceed 10 sleeper spans and so that each wheel in the row can be considered
separately.

Interaction between the track and a bogie was studied. The study pointed to the influence of the bogie frame
oscillations on variation in the wheel–rail contact force over the sleeper span.

Appendix A

Replace the Dirac delta-function in the right-hand side of equality (3.5) with the Gaussian normal
distribution function. Presenting the periodic contact force between the zero wheel and the rail in the form of
Fourier series, one can write now

f 0ðx; tÞ ¼ �a0

Xþ1
n¼�1

Fn exp
i2pnv0t

l

� �
f ðx� v0tÞ; f ðxÞ ¼

1

s
ffiffiffiffiffiffi
2p
p exp �

x2

2s2

� �
. (A.1)

No exponent in the right-hand side of the first equality (A.1) changes its value as the time t increases by h/v0.
As before, the first wheel is left behind the zero wheel by the time h/v0 and by distance h ¼ Hl, H is again an
integer. Their contact forces are bound with the relationship

f 1ðx; tÞ ¼ f 0ðx; t� h=v0Þ ¼ �a0

Xþ1
n¼�1

Fn exp
i2pnv0t

l

� �
f ðx� v0tþ hÞ.

Repeated usage of this relationship gives the contact force between the rail and an arbitrary wheel in the
row. Now, loads from two arbitrary wheels overlap each other. Summarizing these loads and, then, changing
the order of summation gives the rail total load due to the infinite row of wheels. Now, the equality (4.1) takes
the following form:

qðx; tÞ ¼ �a0

Xþ1
n¼�1

F n exp
i2pnv0t

l

� � Xþ1
m¼�1

f ðx� v0tþmhÞ
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and obeys two previous periodicity conditions. Substitute q(x, t) into the right-hand side of the partial
differential equation (3.2). Proceeding to the dimensionless variables from Section 4 yields the following right-
hand side of Eq. (4.6)

A0 1þ c b
q2

qT2
�

q2

qX 2

� �� �
expði2pnTÞ

Xþ1
m¼�1

F ðX � T þmHÞ.

The even function F(X) has been defined in Section 2. Now S ¼ s=l. To calculate the new right-hand side of
Eq. (4.10), multiply the yielded expression by the factor expð�iFsTÞdT=H and integrate the product with
respect to T over the segment 0pTpH.

Changing the order of summation and integration gives the following:

A0

H

Xþ1
m¼�1

Z H

0

expð�iFsTÞ 1þ c b
q2

qT2
�

q2

qX 2

� �� �
expði2pnTÞF ðX � T þmHÞdT .

Further, one can replace the integration variable T by T �mH in each integral as well as F ðX � T þmHÞ

by F ðT � X Þ. These replacements do not cause any other change in the integrand. However, the limits of
integration change their values by the integer mH. Thus,

A0

H
� � � þ

Z �H

�2H

þ

Z 0

�H

þ

Z H

0

þ

Z 2H

H

þ � � �

� �
expð�iFsTÞ 1þ c b

q2

qT2
�

q2

qX 2

� �� �
expði2pnTÞF ðT � X ÞdT

¼
A0

H

Z þ1
�1

expð�iFsTÞ 1þ c b
q2

qT2
�

q2

qX 2

� �� �
expði2pnTÞF ðT � X ÞdT . ðA:2Þ

All further calculations are valid both for the Gaussian normal distribution function and for the Dirac
delta-function. In the last case, the equalityZ

f ðxÞdðjÞðxÞdx ¼ ð�1Þj f ðjÞð0Þ

that introduces the derivative for the Dirac delta-function should be taken into account. Make differentiation
in the right-hand side of equality (A.2). Introducing the new integration variable y ¼ T � X and integrating
by parts do that

A0

H
expð�iFsX Þ 1þ cF2

s;n � cbðð2pnÞ2 þ 2ð2pnÞFs;n þ F2
s;nÞ

	 
Z þ1
�1

expð�iFs;nyÞF ðyÞdy.

The last integral has been calculated in Section 2. Making some transformations, the new right-hand side of
the ordinary differential equation (4.10) may be stated in the final form

A0

H
expð�iFsX Þ 1þ cF2

s;n � cbðFs;n þ 2pnÞ2
	 


expð�F2
s;nS2=2Þ

¼
A0

H
1þ cðF2

s;n � BÞ
	 


expð�iFsX Þ expð�F2
s;nS2=2Þ.
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